Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available May 6, 2026
- 
            Future wireless networks could benefit from the energy-efficient, low-latency, and scalable deployments that Reconfigurable Intelligent Surfaces (RISs) offer. However, the creation of an effective low overhead channel estimate technique is a major obstacle in RIS-assisted systems, especially given the high number of RIS components and intrinsic hardware constraints. This research examines the uplink of a RIS-empowered multi-user MIMO communication system and presents a novel semi-blind channel estimate approach. Unlike current approaches, which rely on pilot-based channel estimation, our methodology uses data to estimate channels, considerably enhancing the achievable rate. We provide a closed-form deterministic expression for the uplink achievable rate in actual settings where the channel state information (CSI) must be estimated rather than assumed perfect. The results of the simulations show that the formula obtained is accurate, with a close alignment between the deterministic and actual achievable rates (generally between 2 5% deviations). The proposed approach outperforms traditional approaches, resulting in rate increases of up to 35–40%, especially in instances with more RIS elements. These findings illustrate RIS technology's tremendous potential to improve system capacity and coverage, providing useful insights for optimizing RIS adoption in future wireless networks.more » « lessFree, publicly-accessible full text available April 2, 2026
- 
            Free, publicly-accessible full text available March 1, 2026
- 
            Free, publicly-accessible full text available January 23, 2026
- 
            The rapid and low-power configuration capabilities of Reconfigurable Intelligent Surfaces (RISs) have made them an attractive option for future wireless networks in terms of energy efficiency. They have the ability to greatly increase connection and facilitate low-latency communications. However, because RIS-based systems often have a large number of RIS unit elements and unique hardware constraints, accurate and low-overhead channel estimate remains a crucial challenge. In this study, we offer a channel estimation framework and concentrate on the uplink of a multi-user multiple-input multiple-output (MU-MIMO) communication system driven by RIS. Our primary goal is to enhance the achievable rate and system capacity. We derive a closed-form deterministic expression for the uplink achievable rate under practical scenarios where channel state information (CSI) is not directly known and must be estimated. In contrast to previous studies assuming perfect CSI, our approach incorporates the channel estimation process, leading to a more realistic performance assessment. Extensive simulations validate the tightness of our derived expression compared to the actual achievable rate across various system parameters (with discrepancies typically within 2-5%). The results highlight the significant impact of RIS on system performance enhancement, even with imperfect CSI. Our findings provide crucial insights into the deployment and optimization of RIS-assisted multi-user wireless networks, underscoring their potential for substantial improvements in rate and capacity.more » « lessFree, publicly-accessible full text available February 5, 2026
- 
            Free, publicly-accessible full text available December 16, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
